Distributed Algorithms

Causal & Total Order Broadcast
3rd exercise session

Matteo Monti <matteo.monti@epfl.ch>
Jovan Komatovic <jovan.komatovic@epfl.ch>

mailto:matteo.monti@epfl.ch
mailto:jovan.komatovic@epfl.ch

Exercise 1

Would it make sense to add the total-order property to the best-effort broadcast?

Exercise 1 (Solution)

Total order property: Let m, and m, be any two messages and suppose p and q
are any two correct processes that deliver m, and m,,. If p delivers m, before m,,

then q delivers m, before m,,.

This allows a scenario where faulty process p broadcasts messages 1, 2, 3, and
correct processes a, b, ¢ behave as follows:

- Process a delivers 1, then 2.
- Process b delivers 3, then 2.
- Process c delivers 1, then 3.

Consensus-Based Total-Order Broadcast algorithm

Exercise 2

What happens in our "Consensus-Based
Total-Order Broadcast" algorithm, if the
set of messages delivered in a round is
not sorted deterministically after deciding
in the consensus abstraction, but before
it is proposed to consensus?

What happens in that algorithm if the set
of messages decided on by consensus is
not sorted deterministically at all?

upon event { tob, Init) do
unordered = (;
delivered := 0
round :=1;
wait ;= FALSE;

upon event (tob, Broadcast | m) do
trigger (rb, Broadcast | m);

upon event (rb, Deliver | p, m) do
if m ¢ delivered then
unordered := unordered U {(p, m)};

upon unordered # () A wait = FALSE do
wait := TRUE;
Initialize a new instance c.round of consensus;
trigger (c.round, Propose | unordered);

upon event (c.r, Decide | decided) such that » = round do
/] by the order in the resulting sorted list
forall (s, m) € sort(decided) do
trigger (tob, Deliver | s, m);
delivered := delivered U decided,
unordered := unordered \ decided;
round = round + 1;
wait := FALSE;

Exercise 2 (Solution 1/2)

Messages not sorted deterministically after the decision but sorted prior to the
proposal

If the deterministic sorting is done prior to proposing the set for consensus, instead
of a posteriori upon deciding, the processes would not agree on a set but on a
sequence of messages. But if they TO-deliver the messages in the decided order,
the algorithm still ensures the total order property.

Exercise 2 (Solution 2/2)

Messages not sorted deterministically neither a priori nor a posteriori

If the messages, on which the algorithm agrees in consensus, are never sorted
deterministically within every batch (neither a priori, not a posteriori), then the total
order property does not hold.

Even if the processes decide on the same batch of messages, they might
TO-deliver the messages within this batch in a different order. In fact, the total
order property would be ensured only with respect to batches of messages, but
not with respect to individual messages. We thus get a coarser granularity in the

total order.

Exercise 3

The "Consensus-Based Total-Order Broadcast" algorithm transforms a consensus
abstraction (together with a reliable broadcast abstraction) into a total-order
broadcast abstraction.

Describe a transformation between these two primitives in the other direction, that
is, implement a (uniform) consensus abstraction from a (uniform) total-order
broadcast abstraction.

Exercise 3 (Solution)

Given a total-order broadcast primitive TO, a
consensus abstraction is obtained as follows:

When a process proposes a value v in consensus,
it TO-broadcasts v. When the first message is
TO-delivered containing some value x, a process
decides x.

Since the total-order broadcast delivers the same
sequence of messages at every correct process,
and every TO-delivered message has been
TO-broadcast, this abstraction implements
consensus.

upon init do
decided := false
end

upon propose(v) do
TO-broadcast(v)
end

upon TO-deliver(v) do
if not decided then
decided := true
decide(v)
end
end

